@ccueil Colles

Matrice d'une application linéaire, et changement de bases


Soit $u$ l'application de $\R^3$ dans $\R^4$ définie par
\[
u(x,y,z)=(-x+y,x-y,-x+z,-y+z).
\]

  1. Montrer que $u$ est linéaire
  2. Soient $\{\mathcal E_1,\mathcal E_2,\mathcal E_3\}$ la base canonique de $\mathbb R^3$ et $\{\mathcal F_1,\mathcal F_2,\mathcal F_3,\mathcal F_4\}$ la base canonique de $\mathbb R^4$.
    Calculer $u(\mathcal E_1)$, $u(\mathcal E_2)$ et $u(\mathcal E_3)$ en fonction de $\mathcal F_1$, $\mathcal F_2$, $\mathcal F_3$ et $\mathcal F_4$.
  3. Écrire la matrice de $u$ dans les bases canoniques.
  4. Montrer que $\{\mathcal F_1,\mathcal F_2,u(\mathcal E_1),u(\mathcal E_2)\}$ est une base de $\mathbb R^4$.
  5. Écrire la matrice de $u$ dans les bases $\{\mathcal E_1,\mathcal E_2,\mathcal E_3\}$ et $\{\mathcal F_1,\mathcal F_2,u(\mathcal E_1),u(\mathcal E_2)\}$.

Correction


Tags:Applications linéairesMatricesEspace vectoriel

Autres sujets au hasard: Lancer de dés