Réalisation d'un récupérateur d'eau

Bac S - Amérique du nord, 2016

Un particulier veut faire fabriquer un récupérateur d'eau. Ce récupérateur d'eau est une cuve qui doit respecter le cahier des charges suivant:
  • elle doit être située à deux mètres de sa maison;
  • la profondeur maximale doit être de deux mètres;
  • elle doit mesurer cinq mètres de long;
  • elle doit épouser la pente naturelle du terrain.
Cette cuve est schématisée ci-dessous.
$$(-1.8,-0.5)(7,5)
\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\pspolygon(2,0)(2,1.8)(-1.3,2.5)(-1.3,0.7)
\rput(-3.3,0.7){\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}}
\psline(2.1,2.7)(5.4,2)
\psline(-1.3,2.5)(2.1,2.7)
\psline(2,1.8)(5.4,2)
\psline[linewidth=0.5pt](2,1.8)(2,3)\psline[linewidth=0.5pt](-1.3,2.5)(-1.3,3.7)
\psset{arrowsize=2pt 3}
\psline[linewidth=0.5pt,arrowsize=8pt]{<->}(2,3)(-1.3,3.7)
\psline[linewidth=0.5pt](2,1.8)(1.2,1.75)\psline[linewidth=0.5pt](2,0)(1.2,-0.05)
\psline[linewidth=0.5pt,arrowsize=8pt]{<->}(1.2,1.75)(1.2,-0.05)
\uput[l](1.2,0.85){2 m}\uput[u](1.35,3.35){5 m}
$$


La partie incurvée est modélisée par la courbe $\mathcal{C}_f$ de la fonction $f$ sur l'intervalle $[2;2e]$ définie par:

\[f(x)=x\ln \lp\dfrac{x}{2}\rp-x+2.\]

La courbe $\mathcal{C}_f$ est représentée ci-dessous dans un repère orthonormé d'unité 1m et constitue une vue de profil de la cuve.
On considère les points $A(2;2)$, $I(2;0)$ et $B(2e;2)$.

\[\psset{unit=2cm}
\begin{pspicture*}(-0.25,-0.3)(6,2.5)
\psaxes[linewidth=1.25pt](0,0)(-0.2,-0.25)(6,2.5)
\psaxes[linewidth=1.25pt](0,0)(0,0)(6,2.5)
\uput[u](2.8,0.2){$\mathcal{C}_f$}
\pscustom[fillstyle=solid,fillcolor=lightgray]
{\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
  \psline(5.437,2)(6,2)
  \psline(6,0)(2,0)}
\pscustom[fillstyle=solid,fillcolor=lightgray]
{\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
  \psline(5.437,2)(6,2)
  \psline(6,0)(2,0)}
\psframe[fillstyle=solid,fillcolor=lightgray](2,2)
\psdots(2,2)(5.437,2)
\psplot[plotpoints=4000]{2}{5.437}{x 2 div ln x mul x sub 2 add}
\psplot[plotpoints=4000]{3}{5.8}{x 2  add 5.437 sub}
\uput[u](2,2){$A$}
\uput[u](5.437,2){$B$}
\uput[ul](5.75,2.2){$\mathcal{T}$}
\uput[dl](2,0){$I$}
\uput[dr](3.437,0){$D$}
\rput(1,1){Terrain}
\rput(3.2,1.2){Cuve}
\rput(4.7,0.5){Terrain}
\psline[linestyle=dotted,linewidth=1.5pt](2,2)(5.437,2)
\end{pspicture*}\]




Partie A   L'objectif de cette partie est d'évaluer le volume de la cuve.

  1. Justifier que les points $B$ et $I$ appartiennent à la courbe $\mathcal{C}_f$ et que l'axe des abscisses est tangent à la courbe $\mathcal{C}_f$ au point $I$.
  2. On note $\mathcal{T}$ la tangente à la courbe $\mathcal{C}_f$ au point $B$, et $D$ le point d'intersection de la droite $\mathcal{T}$ avec l'axe des abscisses.
    1. Déterminer une équation de la droite $\mathcal{T}$ et en déduire les coordonnées de $D$.
    2. On appelle $S$ l'aire du domaine délimité par la courbe $\mathcal{C}_f$, les droites d'équations $y=2$, $x=2$ et $x=2e$.
      $S$ peut être encadrée par l'aire du triangle $ABI$ et celle du trapèze $AIDB$.
      Quel encadrement du volume de la cuve peut-on en déduire ?
    1. Montrer que, sur l'intervalle $[2;2e]$, la fonction $G$ définie par
      \[G(x)=\dfrac{x^2}{2}\ln \lp\dfrac{x}{2}\rp-\dfrac{x^2}{4}\]

      est une primitive de la fonction $g$ définie par $g(x)=x\ln\lp\dfrac{x}{2}\rp$.
    2. En déduire une primitive $F$ de la fonction $f$ sur l'intervalle $[2;2e]$.
    3. Déterminer la valeur exacte de l'aire $S$ et en déduire une valeur approchée du volume $V$ de la cuve au $m^3$ près.


Partie B   Pour tout réel $x$ compris entre $2$ et $2e$, on note $v(x)$ le volume d'eau, exprimé en m$^3$, se trouvant dans la cuve lorsque la hauteur d'eau dans la cuve est égale à $f(x)$.
On admet que, pour tout réel $x$ de l'intervalle [2 ; 2e],

\[v(x) = 5\left[\dfrac{x^2}{2}\ln \left( \dfrac{x}{2}\right) - 2x\ln\left( \dfrac{x}{2}\right) - \dfrac{x^2}{4}  + 2x - 3\right].\]


\[\psset{xunit=1.2cm,yunit=1.2cm}
\begin{pspicture}(-.9,-0.5)(5.8,3.2)
\psline(0,-0.5)(0,3.5)
\pscurve(2,0.1)(3,0.316)(4,0.87)(4.15,1.)(5,1.68)(5.437,2.1)
\multido{\n=0+1}{4}{\psline(-0.1,\n)(0.1,\n)}
\rput{3}(0,0){
  \psline(-0.5,0)(6,0)
  \multido{\n=0+1}{6}{\psline(\n,0.1)(\n,-0.1)\uput[d](\n,0){\n}}
}
\pspolygon[fillstyle=solid,fillcolor=gray](2,0.1)(2,1.5)(0.35,2.3)(0.35,0.9)
\pspolygon[fillstyle=solid,fillcolor=gray](2,1.5)(0.35,2.3)(3.37,2.47)(5.08,1.7)
\pscustom[fillstyle=solid,fillcolor=gray]{
  \pscurve(2,0.1)(3,0.316)(4,0.87)(5.08,1.75)
  \psline(5.08,1.75)(2,1.5)
}
\pspolygon(5.437,2.1)(2,1.85)(0.35,2.7)(3.787,2.95)
\psline(2,1.85)(2,1.5)
\psline(0.35,2.7)(0.35,2.3)
\pscurve(0.35,0.9)(1.35,1.16)(2.35,1.72)(3.35,2.5)(3.787,2.95)
\psline[linestyle=dotted,linewidth=1.5pt](5.08,0.2)(5.08,1.75)(0,1.37)
\uput[d](5.2,0.3){$x$}
\uput[l](0,1.37){$f(x)$}
\multido{\n=0+1}{4}{\uput[l](0,\n){\n}}
\end{pspicture}\]


  1. Quel volume d'eau, au m3 près, y a-t-il dans la cuve lorsque la hauteur d'eau dans la cuve est de un mètre ?
  2. On rappelle que $V$ est le volume total de la cuve, $f$ est la fonction définie en début d'exercice et $v$ la fonction définie dans la partie B.
    On considère l'algorithme ci-dessous.
    Interpréter le résultat que cet algorithme permet d'afficher.
    Variables:a est un réel
    b est un réel
    Traitement: a prend la valeur 2
    b prend la valeur 2e
    Tant que v(b)-v(a) > 10-3 faire:
    c prend la valeur (a+b)/2
    Si v(c) < V/2, alors
    a prend la valeur c
    Sinon
    b prend la valeur c
    Fin Si
    Fin Tant que
    Sortie:Afficher f(c)



Voir aussi:
LongPage: h2: 1 - h3: 0