Généralités sur les fonctions - Exerices

 $1^{\text{ère}}S$

Exercices

Exercice 1 Soit $f(x) = 2x^2 - x + 3$ et C_f sa courbe représentative.

- 1. Le point A(10; 193) appartient-il à C_f ?
- 2. Le point B(-5;60) appartient-il à C_f ?
- 3. Quelle est l'ordonnée du point C de C_f d'abscisse 100?
- 4. Quelle est l'abscisse du point D de C_f d'ordonnée 3?

Exercice 2 Soit les fonctions f et g définies par les expressions $f(x) = x^2 - x$ et g(x) = x - 1. Déterminer les coordonnées des points d'intersection de C_f et C_g .

Exercice 3 Déterminer l'ensemble de définition des fonctions suivantes :

$$f(x) = \frac{5x^2 + 3x - 2}{4x + 5}$$

$$g(x) = 12x^4 - \frac{3}{2x}$$

$$h(x) = \sqrt{4x - 2}$$

$$l(x) = \sqrt{(2x - 3)(x + 2)}$$

$$k(x) = \frac{3}{\sqrt{x}}$$

Exercice 4 On considère les fonctions f et g définies sur [-2;3] par $f(x)=x^2$ et g(x)=x.

- 1. Donner le tableau de variation de f et g, et tracer les courbes $\mathcal C$ et $\mathcal D$ représentatives des fonctions f et g.
- 2. Répondre par vrai ou faux, en corrigeant si l'affirmation est fausse :
 - a) Si x > 1, alors f(x) > 2
 - b) Si -2 < x < 3, alors 4 < f(x) < 9
 - c) Si x > 2, alors f(x) > g(x)
 - d) Si $0 \le x \le 1$, alors $f(x) \ge g(x)$
 - e) Si x < 0, alors g(x) > f(x)

Exercice 5 On considère les fonctions f et g définies sur]0;2] par $f(x)=\frac{1}{x}$ et g(x)=2x-1.

- 1. Donner le tableau de variation de f et g, et tracer les courbes \mathcal{C} et \mathcal{D} représentatives des fonctions f et g.
- 2. Répondre par vrai ou faux, en corrigeant si l'affirmation est fausse :
 - a) Si x > 1, alors f(x) > 1
 - b) Si x < 1, alors f(x) < 1
 - c) Si x > 1, alors f(x) > g(x)
 - d) Si $0 < x \le 1$, alors $f(x) \ge 1$
 - e) Si x < 2, alors f(x) > 0, 5

Exercice 6 Etudier la parité des fonctions suivantes :

a)
$$f(x) = x^2 - 3$$

b)
$$f(x) = 2x - \frac{1}{x}$$

c)
$$f(x) = \frac{2x}{x^2 - 5}$$

$$d) f(x) = \frac{1}{x+2}$$

e)
$$f(x) = |x|$$

f)
$$f(x) = \sqrt{x}$$

Exercice 7

- a) Démontrer que, si λ est un réel strictement négatif et f une fonction décroissante sur un intervalle I, alors la fonction $h = \lambda f$ est croissante sur I.
- b) Démontrer que si f est une fonction croissante sur un intervalle I, alors $h = \frac{1}{f}$ est décroissante sur I.

Exercice 8 Etudier le sens de variation des fonctions définies par les expressions suivantes :

a)
$$f(x) = \frac{1}{2x+1}$$

b)
$$f(x) = -5x^2$$

c)
$$f(x) = \frac{1}{|x|}$$

d)
$$f(x) = \sqrt{-3x + 2}$$
 e) $f(x) = \frac{1}{x^2} - 10$

e)
$$f(x) = \frac{1}{x^2} - 10$$

Exercice 9 On considère les fonctions f et g définies par

$$f(x) = x + |x|$$
 et, $g(x) = x - |x|$

- 1. Déterminer l'expression de la fonction produit h = fg.
- 2. Tracer sur un même graphique les courbes représentatives des fonctions f et g.

Exercice 10 On considère la fonction

$$f: x \mapsto \frac{2x+5}{x+1}$$

et on appelle $\mathcal C$ sa représentation graphique par rapport à un repère orthogonal du plan.

1. Montrer que, pour tout $x \neq -1$, on a :

$$f(x) = 2 + \frac{3}{x+1} \,.$$

2. A l'aide de l'expression précédente, étudier le sens de variation de la fonction f.

Exercice 11 Soit $h_1: x \mapsto \sqrt{x-1}$ et $h_2: x \mapsto x^2+1$.

- 1. Donner les ensembles de définition de h_1 et h_2 .
- 2. Pour chacune des fonctions suivantes, donner son expression et son ensemble de définition :

$$h_2 \circ h_1 \; ; \; h_1 \circ h_2 \; ; \; h_1 \circ h_1 \; ; \; h_2 \circ h_2$$

Exercice 12 Les fonctions u, v et w sont respectivement définies sur les intervalles $[-2, 4], [0, +\infty[$ et IR par

$$u(x) = x + 3$$
, $v(x) = \frac{1}{x}$ et $w(x) = 2 - 7x$.

- 1. Soit $f = w \circ v \circ u$. Démontrer que f est définie par l'expression $f: x \mapsto 2 \frac{7}{x+3}$.
- 2. Étudier le sens de variation de f sur [-2, 4].
- 3. Encadrer f(x) au mieux sur [-2, 4].

Exercice 13 Étudier le sens de variation de la fonction f définie par $f(x) = \frac{-2}{\sqrt{-2x^2 + 8}} + 123$.