Interrogation de mathématiques

- 1. Soit f une fonction définie et dérivable en a. Donner la définition de "f dérivable en a", du nombre dérivé f'(a), et le graphique complet l'explicitant.
- 2. Soit f la fonction définie par $f(x) = \frac{2x+1}{x-3}$. Déterminer la fonction dérivée f' de f, puis son tableau de signe, et enfin le sens de variation de f.
- 3. Soit f la fonction définie par $f(x) = 4x 1 + \frac{2}{2x+1}$.
 - a) Déterminer la fonction dérivée f' de f, son tableau de signe, puis les variations de f.
 - b) Soit la droite D: y = 3x. Déterminer les éventuels points de \mathcal{C}_f où la tangente à \mathcal{C}_f est parallèle à D.

Interrogation de mathématiques

- 1. Soit f une fonction définie et dérivable en a. Donner la définition de "f dérivable en a", du nombre dérivé f'(a), et le graphique complet l'explicitant.
- 2. Soit f la fonction définie par $f(x) = \frac{2x+1}{x-3}$. Déterminer la fonction dérivée f' de f, puis son tableau de signe, et enfin le sens de variation de f.
- 3. Soit f la fonction définie par $f(x) = 4x 1 + \frac{2}{2x+1}$.
 - a) Déterminer la fonction dérivée f' de f, son tableau de signe, puis les variations de f.
 - b) Soit la droite D: y = 3x. Déterminer les éventuels points de C_f où la tangente à C_f est parallèle à D.

Interrogation de mathématiques

- 1. Soit f une fonction définie et dérivable en a. Donner la définition de "f dérivable en a", du nombre dérivé f'(a), et le graphique complet l'explicitant.
- 2. Soit f la fonction définie par $f(x) = \frac{2x+1}{x-3}$. Déterminer la fonction dérivée f' de f, puis son tableau de signe, et enfin le sens de variation de f.
- 3. Soit f la fonction définie par $f(x) = 4x 1 + \frac{2}{2x+1}$.
 - a) Déterminer la fonction dérivée f' de f, son tableau de signe, puis les variations de f.
 - b) Soit la droite D: y = 3x. Déterminer les éventuels points de \mathcal{C}_f où la tangente à \mathcal{C}_f est parallèle à D.

Interrogation de mathématiques

- 1. Soit f une fonction définie et dérivable en a. Donner la définition de "f dérivable en a", du nombre dérivé f'(a), et le graphique complet l'explicitant.
- 2. Soit f la fonction définie par $f(x) = \frac{2x+1}{x-3}$. Déterminer la fonction dérivée f' de f, puis son tableau de signe, et enfin le sens de variation de f.
- 3. Soit f la fonction définie par $f(x) = 4x 1 + \frac{2}{2x+1}$.
 - a) Déterminer la fonction dérivée f' de f, son tableau de signe, puis les variations de f.
 - b) Soit la droite D: y = 3x. Déterminer les éventuels points de \mathcal{C}_f où la tangente à \mathcal{C}_f est parallèle à D.