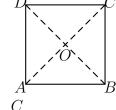
Exercice 1

ABC est un triangle équilatéral de côté 4 cm. I est le milieu de [BC].

Calculer les produits scalaires : a) $\overrightarrow{AB} \cdot \overrightarrow{AC}$ b) $\overrightarrow{AB} \cdot \overrightarrow{AI}$ c) $\overrightarrow{IA} \cdot \overrightarrow{BI}$

Exercice 2 ABCD est un carré de côté 2 cm de centre O. Calculer les produits scalaires :

- a) $\overrightarrow{AB} \cdot \overrightarrow{AD}$ b) $\overrightarrow{AB} \cdot \overrightarrow{AC}$ c) $\overrightarrow{BC} \cdot \overrightarrow{BD}$ d) $\overrightarrow{OB} \cdot \overrightarrow{DC}$

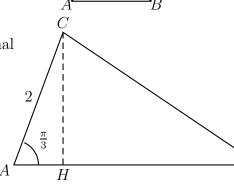


Exercice 3

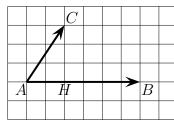
Dans le triangle ABC ci-contre, H est le projeté orthogonal de C sur la droite (AB).

On donne de plus AC = 2, AB = 4, et $\widehat{BAC} = \frac{\pi}{3}$.

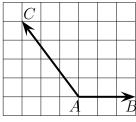
- a) Calculer AH.
- b) Déterminer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et $\overrightarrow{AB} \cdot \overrightarrow{AH}$.
- c) Que remarque-t-on?



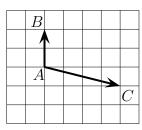
Exercice 4



$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \dots$$



$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \dots$$

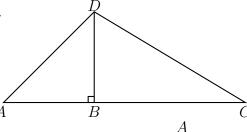


$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \dots$$

Exercice 5 ABD est un triangle rectangle isocèle en B. L'angle BCD mesure 30° et AB = 3.

- 1. Calculer les longueurs AD, CD et BC.
- 2. Déterminer les produits scalaires suivants :

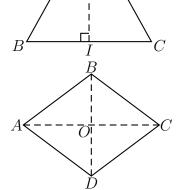
 - a) $\overrightarrow{AB} \cdot \overrightarrow{AD}$ b) $\overrightarrow{CD} \cdot \overrightarrow{CB}$ c) $\overrightarrow{DA} \cdot \overrightarrow{DC}$



Exercice 6

ABC est un triangle isocèle de sommet A tel que AB=2,5 cm et BC = 3 cm. I est le milieu de [BC].

Exprimer le produit scalaire $\overrightarrow{BC} \cdot \overrightarrow{BA}$ de deux manières différentes, et en déduire la valeur de l'angle \widehat{ABC} à 0,1 degré près.



Exercice 7 ABCD est un losange de centre O dont les diagonales mesurent AC = 4 cm et DB = 3 cm.

Calculer une valeur approchée de l'angle \overline{DAC} à 0,1 près.

Exercice 8 Soit \vec{u} et \vec{v} deux vecteurs tels que $||\vec{u}|| = 3$, $||\vec{v}|| = 2$ et $(\vec{u}, \vec{v}) = \frac{\pi}{3}$. Calculer $||\vec{u} + \vec{v}||$.

cas suivants, et en déduire une valeur de l'angle (\vec{u}, \vec{v}) à 0,1 degré près.

a)
$$\vec{u}(1;-2)$$
 et $\vec{v}(6;5)$

a)
$$\vec{u}(1;-2)$$
 et $\vec{v}(6;5)$ b) $\vec{u}(-2;4)$ et $\vec{v}\left(3;\frac{1}{2}\right)$ c) $\vec{u}(\sqrt{2};-2)$ et $\vec{v}(\sqrt{2};1)$

c)
$$\vec{u}(\sqrt{2}; -2)$$
 et $\vec{v}(\sqrt{2}; 1)$

Exercice 10 On se place dans un repère orthonormal $(O; \vec{i}, \vec{j})$.

Dans chacun des cas, déterminer la valeur de m pour que les vecteurs \vec{u} et \vec{v} soient orthogonaux.

a)
$$\vec{u}(m; 5)$$
 et $\vec{v}(1; -4)$

b)
$$\vec{u}(2m;1)$$
 et $\vec{v}(3;2)$

a)
$$\vec{u}(m; 5)$$
 et $\vec{v}(1; -4)$ b) $\vec{u}(2m; 1)$ et $\vec{v}(3; 2)$ c) $\vec{u}(\frac{m}{2}; 2)$ et $\vec{v}(3; -1)$ d) $\vec{u}(m; 3)$ et $\vec{v}(m; -4)$

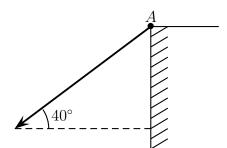
d)
$$\vec{u}(m; 3)$$
 et $\vec{v}(m; -4)$

Exercice 11 Dans un un repère orthonormal $(O; \vec{i}, \vec{j})$, on considère les points A(-3; 1), B(4; -1)et C(1; 15).

Les droites (AB) et (AC) sont-elles perpendiculaires?

Exercice 12 Une personne tire sur une corde attachée au sommet d'un mur vertical avec une force de 200 N suivant un angle de 40° avec l'horizontale.

Déterminer la décomposition de cette force sur des axes horizontaux et verticaux, et calculer l'intensité de chacune de ces forces.



Exercice 13 Le plan est rapporté à un RON $(O; \vec{i}, \vec{j})$.

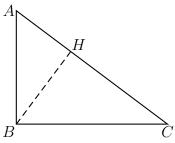
On considère les points A(1;-1), B(3;3), C(-4;4), D(2;1), E(17;12) et F(5;-12).

- 1. Montrer que (AB)//(CD).
- 2. Montrer que $(AB) \perp (EF)$.

Exercice 14 ABC est un triangle rectangle en B tel que AB = 3 cm et BC = 4 cm.

On appelle H le projeté orthogonal de B sur (AC).

Calculer la longueur AH(on pourra utiliser le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$).



Exercice 15 Dans un repère orthonormal $(O; \vec{i}, \vec{j})$, on considère les points A(2; -1), B(3; 2) et C(0; -2).

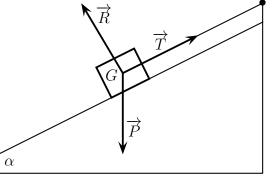
- 1. Calculer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{BC} et \overrightarrow{AC} .
- 2. Calculer les longueurs des côtés du triangle ABC.
- 3. Calculer les produits scalaires $\overrightarrow{AB} \cdot \overrightarrow{AC}$, $\overrightarrow{BC} \cdot \overrightarrow{BA}$ et $\overrightarrow{CA} \cdot \overrightarrow{CB}$.
- 4. En déduire au degré près les angles du triangle ABC.

Exercice 16 Un solide est en équilibre sur un plan incliné. Ce solide estsoumis à trois forces :

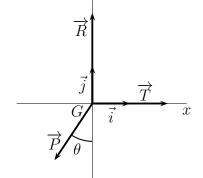
- son poids P
- la réaction du support \overrightarrow{R}
- la tension de la corde \overrightarrow{T}

On sait de plus que P = 20 N et $\alpha = 30^{\circ}$.

On cherche à déterminer l'intensité de chacune de ces forces.



On se place pour cela le repère orthonormal $(G; \vec{i}, \vec{j})$:



- 2. On pose $\overrightarrow{P} = \overrightarrow{P}_x + \overrightarrow{P}_y$, où \overrightarrow{P}_x et \overrightarrow{P}_y sont les composantes de \overrightarrow{P} suivant les axes (Gx) et (Gy).

 Calculer $\|\overrightarrow{P}_x\|$ et $\|\overrightarrow{P}_y\|$.
- 3. Décomposer suivant les axes du repère les vecteurs \overrightarrow{T} , \overrightarrow{R}
- 4. Le solide est en équilibre, cela signifie que $\overrightarrow{P} + \overrightarrow{R} + \overrightarrow{T} = \overrightarrow{0}$. Montrer que $\|\overrightarrow{R}\| \|\overrightarrow{P}\| \cos \theta = 0$ et $\|\overrightarrow{T}\| \|\overrightarrow{P}\| \sin \theta = 0$
- 5. En déduire l'intensité des forces \overrightarrow{R} et \overrightarrow{T} .

Exercice 17 (Equation d'une médiatrice)

Dans un repère orthonormal, on considère les points A(1;4) et B(5;-4).

- 1. Calculer les coordonnées du milieu I du segment [AB].
- 2. On considère un point M appartenant à la médiatrice de [AB]. Déterminer $\overrightarrow{IM} \cdot \overrightarrow{AB}$.
- 3. On note M(x;y) les coordonnées du point M. Montrer que les coordonnées du point M vérifient l'équation x-2y-3=0, appelée équation cartésienne de la droite (IM).
- 4. Déterminer l'équation réduite de la droite (IM).
- 5. Placer les points A et B dans un repère et tracer la droite (IM).

Exercice 18 (Equation d'une hauteur)

Dans un repère orthonormal, on considère les points A(4;2), B(-3;4) et C(-1;-2).

- 1. Soit M un point de la hauteur du triangle ABC issue du sommet C. Déterminer $\overrightarrow{CM} \cdot \overrightarrow{AB}$.
- 2. On note M(x; y) les coordonnées du point M. Déterminer l'équation vérifiée par les coordonnées x et y du point M.
- 3. Déterminer l'équation réduite de la droite (CM).
- 4. Placer les points A, B et C dans un repère et tracer la droite (CM).

Exercice 19 (Equation d'un cercle)

On considère, dans un repère orthonormal, le cercle \mathcal{C} de centre $\Omega(3;4)$ et de rayon 2.

- 1. Soit A(1;4) et B(5;4). Montrer que le segment [AB] est un diamètre du cercle \mathcal{C} .
- 2. Soit M un point du cercle \mathcal{C} . Déterminer $\overrightarrow{MA} \cdot \overrightarrow{MB}$.
- 3. On note M(x; y) les coordonnées du point M. Déterminer l'équation vérifiée par les coordonnées x et y du point M.

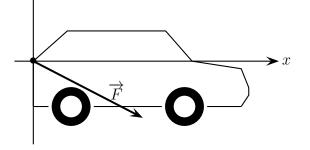
Exercice 20 $\left(O; \vec{i}, \vec{j}\right)$ est un RON direct.

Soit A et B les points du cercle trigonométrique C associés aux angles $\frac{\pi}{4}$ et $\frac{\pi}{3}$.

- 1. Quelle est la mesure de l'angle \widehat{AOB} ?
- 2. Quelles sont les coordonnées de A et B? En déduire que $\overrightarrow{OA} \cdot \overrightarrow{OB} = \frac{\sqrt{2} + \sqrt{6}}{4}$.
- 3. a) Justifier que $\overrightarrow{OA} \cdot \overrightarrow{OB} = \cos \frac{\pi}{12}$.
 - b) En déduire la valeur exacte de $\cos \frac{\pi}{12}$.

Exercice 21 Une personne pousse sa voiture en exercant une force de 200 N suivant une direction qui fait un angle de 25° avec le niveau horizontal de la route.

- 1. Décomposer le vecteur \overrightarrow{F} suivant les deux axes orthogonaux (Ox et (Oy).
- 2. Déterminer la norme de la force qui permet à la voiture d'avancer.



Exercice 22 ABCD est un rectangle tel que AD = 3 et AB = 5. E est le milieu de [AB].

- 1. Calculer les longueurs AC et DE.
- 2. En utilisant la relation de Chasles, exprimer le vecteur \overrightarrow{AC} à l'aide du vecteur \overrightarrow{AB} , et le vecteur \overrightarrow{DE} à l'aide du vecteur \overrightarrow{DA} .

 Calculer alors le produit scalaire $\overrightarrow{AC} \cdot \overrightarrow{DE}$.

3. En déduire la valeur de l'angle $\theta = \left(\overrightarrow{DE}, \overrightarrow{AC}\right)$ en degré à 0,01 près.

