Source Latex: Cours de mathématiques en Première STI2D


Fichier
Type: Cours
File type: Latex, tex (source)
Télécharger le document pdf compilé pdficon
Description
Cours de mathématiques 1ère STI2D - trigonométrie
Niveau
Première STI2D
Table des matières
  • Cercle trigonométrique - Mesure des angles orientés
  • Cosinus et sinus d'un angle
  • Angles associés
  • Équations trigonométriques
  • Fonctions sinus et cosinus
Mots clé
trigonométrie, cosinus, sinus, cos, sin, fonctions trigonométriques, fonctions périodiques, angles remarquables, angles associés, formules trigonométriques, maths, première, 1ère, STI2D
Voir aussi:

Documentation sur LaTeX
lien vers la documentation Latex
Source LaTex icone

Source Latex du cours de mathématiques

\documentclass[12pt]{article}
%\usepackage{french}
\usepackage{amsfonts}\usepackage{amssymb}

\usepackage[french]{babel}
\usepackage{amsmath}
\usepackage[latin1]{inputenc}
\usepackage{a4wide}
\usepackage{graphicx}
\usepackage{epsf}
\usepackage{calc}
\usepackage{enumerate}
\usepackage{array}
%\usepackage{pst-plot,pst-text,pst-tree}
\usepackage{pst-all}
\usepackage{pstricks-add}

\usepackage{hyperref}
\hypersetup{
    pdfauthor={Yoann Morel},
    pdfsubject={Cours math�matiques: Trigonom�trie},
    pdftitle={Trigonom�trie},
    pdfkeywords={Math�matiques, 1STI, 1STI2D, premi�re, 
      STI, STI2D, fonctions circulaires, 
      trigonom�trie, fonctions trigonom�triques}
}
\hypersetup{
    colorlinks = true,
    linkcolor = red,
    anchorcolor = red,
    citecolor = blue,
    filecolor = red,
    pagecolor = red,
    urlcolor = red
}
\voffset=-2.2cm
% Raccourcis diverses:
\newcommand{\nwc}{\newcommand}
\nwc{\dsp}{\displaystyle}
\nwc{\ct}{\centerline}
\nwc{\bge}{\begin{equation}}\nwc{\ene}{\end{equation}}
\nwc{\bgar}{\begin{array}}\nwc{\enar}{\end{array}}
\nwc{\bgit}{\begin{itemize}}\nwc{\enit}{\end{itemize}}
\nwc{\bgen}{\begin{enumerate}}\nwc{\enen}{\end{enumerate}}

\nwc{\la}{\left\{}\nwc{\ra}{\right\}}
\nwc{\lp}{\left(}\nwc{\rp}{\right)}
\nwc{\lb}{\left[}\nwc{\rb}{\right]}

\nwc{\bgsk}{\bigskip}
\nwc{\vsp}{\vspace{0.1cm}}
\nwc{\vspd}{\vspace{0.2cm}}
\nwc{\vspt}{\vspace{0.3cm}}
\nwc{\vspq}{\vspace{0.4cm}}

\def\N{{\rm I\kern-.1567em N}}                              % Doppel-N
\def\D{{\rm I\kern-.1567em D}}                              % Doppel-N
\def\No{\N_0}                                               % Doppel-N unten 0
\def\R{{\rm I\kern-.1567em R}}                              % Doppel R
\def\C{{\rm C\kern-4.7pt                                    % Doppel C
\vrule height 7.7pt width 0.4pt depth -0.5pt \phantom {.}}}
\def\Q{\mathbb{Q}}
\def\Z{{\sf Z\kern-4.5pt Z}}                                % Doppel Z

\renewcommand{\Re}{\mathcal{R}e}
\renewcommand{\Im}{\mathcal{I}\!m}

\def\epsi{\varepsilon}
\def\lbd{\lambda}
\def\tht{\theta}

\def\Cf{\mathcal{C}_f}

\nwc{\tm}{\times}
\nwc{\V}[1]{\overrightarrow{#1}}

\nwc{\zb}{\mbox{$0\hspace{-0.67em}\mid$}}
\nwc{\db}{\mbox{$\hspace{0.1em}|\hspace{-0.67em}\mid$}}

\nwc{\ul}[1]{\underline{#1}}

\newcounter{nex}%[section]
\setcounter{nex}{0}
\newenvironment{EX}{%
\stepcounter{nex}
\bgsk{\noindent {\bf Exercice }\arabic{nex}}\hspace{0.2cm}%
\nopagebreak%
}{}

\nwc{\bgex}{\begin{EX}}\nwc{\enex}{\end{EX}}

\nwc{\bgfg}{\begin{figure}}\nwc{\enfg}{\end{figure}}
  \nwc{\epsx}{\epsfxsize}\nwc{\epsy}{\epsfysize}
\nwc{\bgmp}{\begin{minipage}}\nwc{\enmp}{\end{minipage}}


\nwc{\limcdt}[4]{
  $\dsp
  \lim_{\bgar{ll}\scriptstyle{#1}\vspace{-0.2cm}\\\scriptstyle{#2}\enar}
  {#3}={#4}$
}
\nwc{\tq}{\ \mbox{\bf\Large /}\ }



\headheight=0cm
\textheight=26.8cm
\topmargin=-1.8cm
\footskip=1.cm
\textwidth=18cm
\oddsidemargin=-1cm
\parindent=0.2cm

\newlength{\ProgIndent}
\setlength{\ProgIndent}{0.3cm}

\setlength{\unitlength}{1cm}

\newcounter{ntheo}
\setcounter{ntheo}{1}
\newlength{\ltheo}
\nwc{\bgth}[1]{
  \settowidth{\ltheo}{Th�or�me \arabic{ntheo}}
  \noindent
  \paragraph{Th�or�me}% \arabic{ntheo}}
  \hspace{-0.5em}%\hspace{-0.4cm}
  \bgmp[t]{\textwidth-\ltheo-0.5em}{\it #1}\enmp
  \stepcounter{ntheo}
}

\newcounter{nprop}
\setcounter{nprop}{1}
\newlength{\lprop}
\nwc{\bgprop}[1]{
  \settowidth{\lprop}{Propri�t� \arabic{nprop}}
  \noindent
  \paragraph{Propri�t�}% \arabic{ntheo}}
  \hspace{-0.5em}%\hspace{-0.4cm}
  \bgmp[t]{\textwidth-\lprop-0.5em}{\it #1}\enmp
  \stepcounter{nprop}
}
\newlength{\lprops}
\nwc{\bgprops}[1]{
  \settowidth{\lprops}{Propri�t�s \arabic{nprop}}
  \noindent
  \paragraph{Propri�t�s}% \arabic{ntheo}}
  \hspace{-0.5em}%\hspace{-0.4cm}
  \bgmp[t]{\textwidth-\lprop-0.5em}{\it #1}\enmp
  \stepcounter{nprop}
}

\nwc{\bgcorol}[1]{
  \settowidth{\ltheo}{Corollaire \arabic{ntheo}}
  \noindent
  \paragraph{Corollaire}% \arabic{ntheo}}
  \hspace{-0.5em}%\hspace{-0.4cm}
  \bgmp[t]{\textwidth-\ltheo-0.5em}{\it #1}\enmp
}

\newcounter{ndef}
\setcounter{ndef}{1}
\newlength{\ldef}
\nwc{\bgdef}[1]{
  \settowidth{\ldef}{D�finition \arabic{ndef}}
  \noindent
  \paragraph{D�finition}% \arabic{ndef}}
  \hspace{-0.5em}%\hspace{-0.4cm}
  \bgmp[t]{\textwidth-\ldef-0.5em}{\it #1}\enmp
  \stepcounter{ntheo}
}

\nwc{\bgproof}[1]{
  \vspq\noindent
  \ul{D�monstration:} #1 
  \hfill$\square$
}

% "Cadre" type Objectifs....
\nwc{\ObjTitle}{D�finition\!\!:\ \ }
\newlength{\lgObjTitle}
\newlength{\hgObj}
\newlength{\hgObjTitle}\settoheight{\hgObjTitle}{\ObjTitle}
\newcommand{\Obj}[1]{%
  \begin{flushright}%
  \settowidth{\lgObjTitle}{\ObjTitle}
  \settototalheight{\hgObj}{\phantom{\bgmp{16.4cm}{\bf\emph{\ObjTitle}}#1\enmp}}
  \bgmp{17.1cm}
  \psline(-1ex,-\hgObj)(-1ex,-1.5\hgObjTitle)(\lgObjTitle,-1.5\hgObjTitle)\par
    \bgmp{17.cm}{\bf\emph{\ObjTitle}}#1\enmp
  \enmp
  \end{flushright}
}

\renewcommand\thesection{\Roman{section}\ \ -}
\renewcommand\thesubsection{\arabic{subsection})}
\renewcommand\thesubsubsection{\hspace*{0.5cm}\alph{subsubsection})\hspace*{-0.4cm}}

% Bandeau en bas de page
\newcommand{\TITLE}{Fonctions trigonom�triques}
\author{Y. Morel}
\date{}

\usepackage{fancyhdr}
\usepackage{lastpage}

\pagestyle{fancyplain}
\setlength{\headheight}{0cm}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0.1pt}
\lhead{}\chead{}\rhead{}

\lfoot{Y. Morel - \url{https://xymaths.fr/Lycee/1STI/}}
\rfoot{\TITLE\ - $1^{\mbox{\scriptsize{�re}}}STI2D$ - \thepage/\pageref{LastPage}}
%\cfoot{\TITLE\ - $1^{\mbox{\scriptsize{�re}}}STI2D$}
\cfoot{}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%\thispagestyle{empty}

\vspace*{-0.5cm}


\hfill{\LARGE \bf \TITLE}
\hfill $1^{\text{�re}}STI2D$
\vspace{0.4cm}


\section{Cercle trigonom�trique - Mesure des angles orient�s}

\bgdef{
Dans le plan muni d'un rep�re $\lp O;\vec{i},\vec{j}\rp$, 
le cercle trigonom�trique est le cercle de centre $O$ et de rayon
$1$ sur lequel on a choisit: 
\bgit
\item un {\bf sens direct}, ou sens positif, sens inverse des
  aiguilles d'une montre 
\item un {\bf sens indirect}, ou sens n�gatif, sens des aiguilles
  d'une montre. 
\enit
}

\ct{
\psset{unit=2cm,arrowsize=7pt}
\begin{pspicture}(-1.3,-1.3)(1.3,1.4)
  \rput(-0.15,-0.15){$O$}
  \psline(-1.2,0)(1.2,0)
  \psline[linewidth=1.4pt]{->}(0,0)(1,0)\rput(0.5,-0.15){$\vec{i}$}
  \psline(0,-1.2)(0,1.2)
  \psline[linewidth=1.4pt]{->}(0,0)(0,1)\rput(-0.15,0.5){$\vec{j}$}
  \pscircle(0,0){1}
  %
  \psarc{->}(0,0){1.3}{20}{65}\rput(1.1,1.){\large$+$}
  \psarc{<-}(0,0){1.3}{-65}{-20}\rput(1.1,-1.){\large$-$}
\end{pspicture}
}

\bgdef{
  Sur le cercle trigonom�trique, la mesure en radians d'un angle
  orient� est �gale � la mesure alg�brique (avec un signe) de l'arc
  intercept�. 
}

\vspq\noindent
\ul{Exemple:} 
Un tour complet, soit $360^\circ$, mesure $2\pi$ radians. 

L'angle orient� $\lp\vec{i},\vec{j}\rp$ mesure
$\dfrac{2\pi}{4}=\dfrac{\pi}{2}$ radians ($1/4$ de tour). 

L'angle orient� $\lp\vec{j},\vec{i}\rp$ mesure 
$-\dfrac{\pi}{2}$ radians. 

\vspd
On parle d'{\bf une} mesure de l'angle orient� car il en poss�de une
infinit�: 

l'angle orient� $\lp\vec{i},\vec{j}\rp$ mesure 
$\dfrac{\pi}{2}$ rad, $\dfrac{\pi}{2}+2\pi=\dfrac{5\pi}{2}$ rad, 
$\dfrac{5\pi}{2}+2\pi=\dfrac{9\pi}{2}$ rad,\dots , 
$\dfrac{\pi}{2}-2\pi=-\dfrac{3\pi}{2}$ rad,\dots


\bgex Compl�ter: 
\vspd

\ct{
\renewcommand{\arraystretch}{2.2}
\rput(-1.8,0.1){$\tm\dots$}
\psarc[arrowsize=7pt]{->}(0,0.1){1}{100}{260}
\begin{tabular}{|l|*8{p{1.1cm}|}}\hline
Degr�s & $0$ & $30$ & $45$ & $60$ & $90$ & $135$ & $180$ & $360$ 
\\\hline
Radians & $0$ & &&&&&&
\\\hline
\end{tabular}
\psarc[arrowsize=7pt]{->}(0,0.1){1}{-80}{80}
\rput(1.5,0.1){$\tm\dots$}
}

\vspace{0.6cm}\ct{
\renewcommand{\arraystretch}{2.2}
\begin{tabular}{|l|*7{p{1.1cm}|}}\hline
  Degr�s & $1$ &  & $-15$ & $20$ & $270$ & &
  \\\hline
  Radians &  & $1$ & & & &$\dfrac{167\pi}{4}$& $\dfrac{7\pi}{3}$
  \\\hline
\end{tabular}
}
\enex

\vspd
\bgdef{
  La {\bf mesure principale} d'un angle orient� est la mesur de cet
  angle appartenant � l'intervalle $]-\pi;\pi]$. 
}

\vspd\noindent
\ul{Exemple:} 
L'angle orient� $\lp\vec{j},\vec{i}\rp$ a plusieurs mesures: 
$\dfrac{3\pi}{2}$, $-\dfrac{\pi}{2}$, 
$\dfrac{3\pi}{2}+2\pi=\dfrac{7\pi}{2}$,\dots 

Sa mesure principale est $-\dfrac{\pi}{2}$. 

\bgex
D�terminer la mesure principale des angles orient�s suivants: 

\vspd\noindent
a)\ $\dfrac{7\pi}{3}$ 
\hspace{1.2cm}
b)\ $-\dfrac{11\pi}{6}$ 
\hspace{1.2cm}
c)\ $\dfrac{9\pi}{8}$
\hspace{1.2cm}
d)\ $\dfrac{15\pi}{2}$
\hspace{1.2cm}
e)\ $\dfrac{26\pi}{4}$
\hspace{1.2cm}
f)\ $-\dfrac{13\pi}{5}$
\enex

\section{Cosinus et sinus d'un angle orient�}

\bgex
\bgen
\item $ABCD$ est un carr� de c�t� $1$. 

  \bgmp{12cm}
  Calculer la longueur $AC$, puis en d�duire les valeurs exactes de 
  $\cos\dfrac{\pi}{4}$ et $\sin\dfrac{\pi}{4}$.
  \enmp\qquad
  \bgmp{3cm}
  \begin{pspicture}(-0.3,-0.3)(2.2,1.2)
    \pspolygon(0,0)(2,0)(2,2)(0,2)
    \psline(0,2)(2,0)
    \rput(-0.2,2.2){$A$}
    \rput(2.2,2.2){$B$}
    \rput(2.2,-.2){$C$}
    \rput(-0.2,-0.2){$D$}
  \end{pspicture}
  \enmp

\item $RST$ est un triangle �quilat�ral de c�t� $1$. 

  \bgmp{12cm}
  Calculer la longueur $TI$, en d�duire les valeurs exates de 
  $\cos\dfrac{\pi}{6}$, 
  $\sin\dfrac{\pi}{6}$, 
  $\cos\dfrac{\pi}{3}$ et 
  $\sin\dfrac{\pi}{3}$.
  \enmp\qquad
  \bgmp{3cm}
  \begin{pspicture}(-0.3,-0.3)(2.2,1.4)
    \pspolygon(0,0)(2,0)(1,1.7)
    \psline(1,1.7)(1,0)
    \psline(0.4,-0.1)(0.5,0.1)\psline(0.5,-0.1)(0.6,0.1)
    \psline(1.4,-0.1)(1.5,0.1)\psline(1.5,-0.1)(1.6,0.1)
    \rput(1,1.9){$T$}
    \rput(-0.2,-0.2){$R$}
    \rput(2.2,-0.2){$S$}
    \rput(1,-0.2){$I$}
  \end{pspicture}
  \enmp
\enen
\enex


\bgdef{
Soit $M$ un point du cercle trigonom�trique, 
et $x$ une mesure de l'angle orient� 
$\lp \vec{i},\V{OM}\rp$. 

\bgit
\item Le {\bf cosinus} de $x$, not� $\cos x$, est l'abscisse de $M$. 
\item Le {\bf sinus} de $x$, not� $\sin x$, est l'ordonn�e de $M$. 
\enit
}

\ct{
\psset{unit=3cm,arrowsize=7pt}
\begin{pspicture}(-1.3,-1.3)(1.3,1.4)
  \rput(-0.15,-0.15){$O$}
  \psline(-1.2,0)(1.2,0)
  \psline[linewidth=1.4pt]{->}(0,0)(1,0)\rput(0.3,-0.1){$\vec{i}$}
  \psline(0,-1.2)(0,1.2)
  \psline[linewidth=1.4pt]{->}(0,0)(0,1)\rput(-0.1,0.8){$\vec{j}$}
  \pscircle(0,0){1}
  %
  \rput(0.866,0.5){$\bullet$}\rput(1.05,0.55){$M$}
  \psline(0,0)(0.866,0.5)
  \psarc{->}(0,0){0.6}{0}{30}\rput(0.7,0.15){$x$}
  %
  \psline[linestyle=dashed](0.866,0)(0.866,0.5)(0,0.5)
  \rput(0.85,-0.1){$\cos x$}
  \rput(-0.15,0.52){$\sin x$}
\end{pspicture}
}

\bgmp{11cm}
{\bf Angles remarquables} \\[0.3cm]
\renewcommand{\arraystretch}{2.4}
\begin{tabular}{|c|*5{p{1.2cm}|}}\hline
$x$ & 
\bgmp{1.2cm} $0^\circ$ \\[0.3cm] $0$ rad \enmp
&
\bgmp{1.2cm} $30^\circ$ \\[0.2cm] $\dfrac{\pi}{6}$ rad \enmp
&
\bgmp{1.2cm} $45^\circ$ \\[0.2cm] $\dfrac{\pi}{4}$ rad \enmp
&
\bgmp{1.2cm} $60^\circ$ \\[0.2cm] $\dfrac{\pi}{3}$ rad \enmp
&
\bgmp{1.2cm} $90^\circ$ \\[0.2cm] $\dfrac{\pi}{2}$ rad \enmp
\\\hline
$\sin x$ & $0$ & $\dfrac{\bf 1}{2}$ & $\dfrac{\sqrt{\bf 2}}{2}$ 
& $\dfrac{\sqrt{\bf 3}}{2}$ & $1$ 
\\\hline
$\cos x$ & $1$ & $\dfrac{\sqrt{\bf 3}}{2}$ 
& $\dfrac{\sqrt{\bf 2}}{2}$ & $\dfrac{\bf 1}{2}$ & $0$
\\\hline
\end{tabular}
\enmp
\bgmp{8cm}
\psset{unit=4cm}
\begin{pspicture}(-0.2,-0.2)(1.2,1.2)
  \psline(-0.1,0)(1.2,0)\rput(-0.1,1.15){$\lp\sin\rp$}
  \psline(0,-0.1)(0,1.2)\rput(1.3,-0.08){$\lp\cos\rp$}
  \rput(1.02,-0.08){$1$}\rput(-0.05,1.02){$1$}
  \rput(-0.08,-0.08){$O$}
  \psarc(0,0){1}{0}{90}
  % pi/6
  \rput(0.866,0.5){$\bullet$}\rput(1,0.5){$\dfrac{\pi}{6}$}
  \psline[linestyle=dashed](0.866,0)(0.866,0.5)(0,0.5)
  \rput(0.88,-0.1){$\frac{\sqrt{3}}{2}$}
  \rput(-0.06,0.5){$\frac{1}{2}$}
  % pi/4
  \rput(0.707,0.707){$\bullet$}\rput(0.85,0.8){$\dfrac{\pi}{4}$}
  \psline[linestyle=dashed](0.707,0)(0.707,0.707)(0,0.707)
  \rput(0.7,-0.1){$\frac{\sqrt{2}}{2}$}
  \rput(-0.1,0.7){$\frac{\sqrt{2}}{2}$}
  % pi/6
  \rput(0.5,0.866){$\bullet$}\rput(0.6,1){$\dfrac{\pi}{3}$}
  \psline[linestyle=dashed](0.5,0)(0.5,0.866)(0,0.866)
  \rput(0.5,-0.1){$\frac{1}{2}$}
  \rput(-0.09,0.88){$\frac{\sqrt{3}}{2}$}
\end{pspicture}
\enmp

\bgprop{Pour tout r�el $x$: 
\bgit
\item[$\bullet$] $-1\leqslant \cos x\leqslant 1$ 
\item[$\bullet$] $-1\leqslant \sin x\leqslant 1$ 
\item[$\bullet$] $\cos^2 x +\sin^2 x=1$ 
  {\sl (en notant $\cos^2 x = \lp\cos x\rp^2$ 
    et $\sin^2 x=\lp\sin x\rp^2$)}
\enit
}

\bgex
D�terminer les valeurs exactes de: 

\vspd\noindent
a)\ $\cos\lp-\dfrac{\pi}{3}\rp$
\qquad
b)\ $\cos\lp\dfrac{2\pi}{3}\rp$
\qquad
c)\ $\cos\lp\dfrac{5\pi}{6}\rp$
\qquad
d)\ $\cos\lp-\dfrac{3\pi}{4}\rp$
\qquad
e)\ $\sin\lp\dfrac{4\pi}{3}\rp$
\qquad
\enex

\section{Angles associ�s}

%\vspace{1cm}
%\hspace{-1cm}
\bgmp{8.4cm}
\psset{unit=3cm}%{xunit=5cm,yunit=5cm}
\begin{pspicture}(-1.3,1.5)(1.3,1.5)

\pscircle(0,0){1}
\psline[linewidth=0.8pt](-1.2,0)(1.2,0)
\psline[linewidth=0.8pt](0,-1.2)(0,1.2)
\psarc[linewidth=0.6pt]{->}(0,0){0.4}{0}{19}
\put(0.45,0.05){\large{$x$}}

\psline[linewidth=0.8pt](-1.2,-0.4)(1.2,.4)
\psline[linewidth=0.8pt](-1.2,0.4)(1.2,-.4)
\psline[linewidth=0.8pt](-0.4,1.2)(.4,-1.2)
\psline[linewidth=0.8pt](0.4,1.2)(-.4,-1.2)

\psline[linewidth=0.5pt,linestyle=dashed](0.94,-0.3)(0.94,0.3)
\psline[linewidth=0.5pt,linestyle=dashed](-0.94,-0.3)(-0.94,0.3)
\psline[linewidth=0.5pt,linestyle=dashed](-0.94,0.32)(0.94,0.32)
\psline[linewidth=0.5pt,linestyle=dashed](-0.94,-0.32)(0.94,-0.32)
\psline[linewidth=0.5pt,linestyle=dashed](-0.32,0.94)(0.32,0.94)
\psline[linewidth=0.5pt,linestyle=dashed](-0.32,-0.94)(0.32,-0.94)
\psline[linewidth=0.5pt,linestyle=dashed](-0.32,0.94)(-0.32,-0.94)
\psline[linewidth=0.5pt,linestyle=dashed](0.32,0.94)(0.32,-0.94)

\put(1.25,-.03){\large{$0$}}
\put(1.25,0.4){\large{$x$}}
\put(1.2,-0.45){\large{$-x$}}
\put(-1.5,0.4){\large{$\pi-x$}}
\put(-1.5,-0.45){\large{$\pi+x$}}
\put(-1.4,0.){\large{$\pi$}}
\put(-0.7,1.25){\large{$\dsp\frac{\pi}{2}+x$}}
\put(0.25,1.25){\large{$\dsp\frac{\pi}{2}-x$}}
\put(-.05,1.35){\large{$\dsp\frac{\pi}{2}$}}
\put(-0.75,-1.3){\large{$\dsp\frac{3\pi}{2}-x$}}
\put(-0.1,-1.4){\large{$\dsp\frac{3\pi}{2}$}}
\put(0.28,-1.3){\large{$\dsp\frac{3\pi}{2}+x$}}

\put(0.7,-0.1){$\cos x$}
\put(-0.1,0.35){$\sin x$}
\end{pspicture}	
\enmp
\bgmp[t]{8.2cm}
\paragraph{Parit� des fonctions sinus et cosinus.}
\ 

La fonction cosinus est paire, la fonction sinus est impaire. 

En d'autres termes, pour tout nombre r�el $x$,  
%\bgmp[b]{3cm}
\[\la\bgar{ll}
\cos(-x) = \cos x \vspd\\
\sin(-x) = -\sin x
\enar\right.
\]%\enmp

\vspt
\paragraph{Autres relations.} Pour tout nombre r�el $x$, 
\[
\la\bgar{ll}
\dsp \cos\lp\frac{\pi}{2}-x\rp = \sin x \vspd\\
\dsp \sin\lp\frac{\pi}{2}-x\rp = \cos x
\enar\right.
\hspace{0.6cm}
\la\bgar{ll}
\dsp \cos\lp\frac{\pi}{2}+x\rp = -\sin x \vspd\\
\dsp \sin\lp\frac{\pi}{2}+x\rp = \cos x
\enar\right.
\]

\[ \la\bgar{ll}
\cos\lp\pi-x\rp = -\cos x \vspd\\
\sin\lp\pi-x\rp = \sin x
\enar\right.
\hspace{0.6cm}
\la\bgar{ll}
\cos\lp\pi+x\rp = -\cos x \vspd\\
\sin\lp\pi+x\rp = -\sin x
\enar\right.
\]
\enmp

\bgex
Simplifier les expressions: \vspd

a)\ $A=\cos\lp\dfrac{\pi}{2}-x\rp+\sin(-x)+\cos(-x)$ 
\qquad
b)\ $B=\sin(\pi-x)+\cos(\pi+x)+\sin(x+\pi)$

c)\ $C=\sin\lp\dfrac{\pi}{2}-x\rp+\cos(\pi-x)+\sin(-x)$
\qquad
d)\ $D=\cos(x+\pi)+\sin(\pi-x)+\cos(x+2\pi)$
\enex


\section{Equations trigonom�triques}

\bgprop{
  Les solutions dans $\R$ de l'�quation 
  $\cos x =\cos a$ sont: 
  $\la\bgar{ll} x=a+2k\pi \\[0.3cm] x=-a+2k\pi\enar\right.$, 
  o� $k$ est un entier relatif quelconque. 
}

\bgprop{
  Les solutions dans $\R$ de l'�quation 
  $\sin x =\sin a$ sont: 
  $\la\bgar{ll} x=a+2k\pi \\[0.3cm] x=\pi-a+2k\pi\enar\right.$, 
  o� $k$ est un entier relatif quelconque. 
}


\bgex
R�soudre les �quations sur $\R$, puis sur $[\,0;2\pi[$: \vspd

a)\ $\cos x=\cos\lp\dfrac{\pi}{6}\rp$
\qquad
b)\ $\sin x=\sin\lp\dfrac{2\pi}{3}\rp$
\qquad
c)\ $\cos t=\cos\lp\dfrac{5\pi}{6}\rp$
\qquad
d)\ $\sin t=\sin\lp\dfrac{\pi}{8}\rp$

e)\ $\cos x=0$ 
\qquad
f)\ $\cos x=\dfrac12$
\qquad
g)\ $\sin t=-\dfrac{\sqrt{3}}{2}$
\qquad
h)\ $\cos x=\cos\lp x+\dfrac{\pi}{4}\rp$

\vspd
i)\ $\cos x=\sin\lp\dfrac{\pi}{3}\rp$
\qquad
j)\ $\cos x=\sin\lp\dfrac{\pi}{12}\rp$
\qquad
k)\ $\sin x=\cos x$
\qquad
l)\ $\cos(2x)=\sin\lp \dfrac{x}{2}\rp$
\enex


\bgex
Dans un rep�re orthonorm�, on consid�re les points 
$A(1;2)$, $B(3;2)$, $C(2;2)$ et \mbox{$D(2+\sqrt{3};3)$}. 

En calculant le produit scalaire $\V{AB}\cdot\V{CD}$ de deux mani�res
diff�rentes, d�terminer une mesure de l'angle $\lp\V{AB},\V{CD}\rp$. 
\enex

\bgex On consid�re un objet soumis � deux forces $\V{F_1}$ et
$\V{F_2}$, 
telles que $\|\V{F_1}\|=200$N, 
et $\|\V{F_2}\|=250$N. 

D�terminer une mesure de l'angle $\lp\V{F_1},\V{F_2}\rp$ pour que l'on
ait 
$\V{F_1}\cdot\V{F_2}=10^4$. 
\enex

\bgex {\sl Projection d'un vecteur sur deux axes orthgonaux} 

\bgmp{12cm}
On consid�re la d�composition d'un vecteur $\V{F}$ sur deux axes
orthogonaux comme repr�sent� sur la figure ci-contre. 

On note $F=\|\V{F}\|$, 
$F_1=\|\V{F_1}\|$ 
et $F_2=\|\V{F_2}\|$.

\vspd
Montrer que:\quad
$F_1=F\,\cos\tht 
\quad\text{ et, }\quad
F_2=F\,\sin\tht 
$.
\enmp
\bgmp{6cm}
\psset{unit=1cm,arrowsize=6pt}
\begin{pspicture}(-1,-0.2)(3,2.2)
  \psline(-0.5,0)(3.4,0)
  \psline(0,-0.5)(0,2.6)
  \rput(-0.2,-0.2){$O$}
  %
  \psline[linewidth=1.6pt,arrowsize=8pt]{->}(0,0)(2.5,1.8)
  \rput(2.2,2.1){$\V{F}$}
  \psline[linewidth=1.3pt]{->}(0,0)(2.5,0)
  \rput(1.6,-0.4){$\V{F}_1$}
  \psline[linewidth=1.3pt]{->}(0,0)(0,1.8)
  \rput(-0.4,0.8){$\V{F}_2$}
  %
  \psline[linestyle=dashed](2.5,0)(2.5,1.8)(0,1.8)
  \psarc{->}(0,0){1}{0}{35}
  \rput(1.2,0.4){$\tht$}
\end{pspicture}
\enmp
\enex



\section{Fonctions sinus et cosinus}


\bgprop{
  \bgit
  \item[$\bullet$] Pour tout r�el $x$, 
    $\cos(x+2\pi)=\cos x$ et $\sin(x+2\pi)=\sin x$. 

    Les fonctions $x\mapsto \cos x$ et $x\mapsto \sin x$ sont 
    {\bf p�riodiques} de p�riode $2\pi$. 

    Les courbes repr�sentatives des fonctions sinus (sinuso�de) et
    cosinus (cosinuso�de) sont inchang�es par translation de vecteur 
    $2\pi\vec{i}$. 

  \item[$\bullet$] Pour tout r�el $x$, $\cos(-x)=\cos x$. 

    La fonction cosinus est {\bf paire}, sa courbe repr�sentative
    admet l'axe des ordonn�es comme axe de sym�trie. 


  \item[$\bullet$] Pour tout r�el $x$, $\sin(-x)=-\sin x$. 

    La fonction sinus est {\bf impaire}, sa courbe repr�sentative
    admet l'origine du rep�re comme centre de sym�trie. 
  \enit
}

\psset{unit=1cm}
\begin{pspicture}(-8.5,-1.5)(8.5,1.5)
  \psline{->}(-8.2,0)(8.2,0)
  \psline{->}(0,-1.4)(0,1.4)
  \rput(0.2,-0.2){$O$}
  \psplot[plotpoints=1000]{-8}{8}{x 3.14 div 180 mul sin}
  \psline(-6.28,-0.1)(-6.28,0.1)\rput(-6.28,-0.4){$-2\pi$}
  \psline(-4.59,-0.1)(-4.59,0.1)\rput(-4.59,-0.4){$-\frac{3\pi}{2}$}
  \psline(-3.14,-0.1)(-3.14,0.1)\rput(-3.14,-0.4){$-\pi$}
  \psline(-1.53,-0.1)(-1.53,0.1)\rput(-1.53,-0.4){$-\frac{\pi}{2}$}
  \psline(1.53,-0.1)(1.53,0.1)\rput(1.53,-0.4){$\frac{\pi}{2}$}
  \psline(3.14,-0.1)(3.14,0.1)\rput(3.14,-0.4){$\pi$}
  \psline(4.59,-0.1)(4.59,0.1)\rput(4.59,-0.4){$\frac{3\pi}{2}$}
  \psline(6.28,-0.1)(6.28,0.1)\rput(6.28,-0.4){$2\pi$}
  \rput(2.7,1.1){$y=\sin x$}
\end{pspicture}

\psset{unit=1cm}
\begin{pspicture}(-8.5,-1.5)(8.5,1.5)
  \psline{->}(-8.2,0)(8.2,0)
  \psline{->}(0,-1.4)(0,1.4)
  \rput(0.2,-0.2){$O$}
  \psplot[plotpoints=1000]{-8}{8}{x 3.14 div 180 mul cos}
  \psline(-6.28,-0.1)(-6.28,0.1)\rput(-6.28,-0.4){$-2\pi$}
  \psline(-4.59,-0.1)(-4.59,0.1)\rput(-4.59,-0.4){$-\frac{3\pi}{2}$}
  \psline(-3.14,-0.1)(-3.14,0.1)\rput(-3.14,-0.4){$-\pi$}
  \psline(-1.53,-0.1)(-1.53,0.1)\rput(-1.53,-0.4){$-\frac{\pi}{2}$}
  \psline(1.53,-0.1)(1.53,0.1)\rput(1.53,-0.4){$\frac{\pi}{2}$}
  \psline(3.14,-0.1)(3.14,0.1)\rput(3.14,-0.4){$\pi$}
  \psline(4.59,-0.1)(4.59,0.1)\rput(4.59,-0.4){$\frac{3\pi}{2}$}
  \psline(6.28,-0.1)(6.28,0.1)\rput(6.28,-0.4){$2\pi$}
  \rput(1.5,1){$y=\cos x$}
\end{pspicture}

\bgex
Soit $f$ la fonction p�riodique de p�riode $1$ d�finie par 
$f(t)=-2t+1$ si $t\in[0;1]$. 

Tracer la repr�sentation graphique de $f$ sur $[-2;4]$. 
\enex

\bgex
Soit $f$ la fonction p�riodique de p�riode $2$ d�finie par 
$f(t)=t^2$ si $t\in[-1;1]$. 

Tracer la repr�sentation graphique de $f$ sur $[-3;5]$. 
\enex


\bgex
Soit $f$ la fonction p�riodique, de p�riode 2, 
d�finie par $f(t)=-2t^2+2$ si $t\in[-1;1]$.  

Dresser le tableau de variations de $f$ sur $[-1;1]$. 

Tracer alors la repr�sentation graphique de $f$ sur $[-3;5]$. 
\enex


\bgex
L''�volution de la population $P$ d'animaux dans une for�t est
mod�lis�e par: 
\[P(t)=500+50\sin\lp 2\pi t-\dfrac{\pi}{2}\rp\ ,\]
o� $t$ est exprim� en ann�es. 

\bgen
\item Calculer $P(0)$, $P\lp\dfrac12\rp$ et $P(1)$. 
\item Quelle est la p�riode de la fonction $P$ ?
\item Pour quelle valeur de $t$, la population est-elle � son maximum
  dans la premi�re ann�e ? 
  Quelle est la population maximum ?
\enen
\enex

\end{document}

Télécharger le fichier source Latex