@ccueil Colles

Source LaTeX icone Cours-Activite-Fonctions-affine-Demonstration-droite



Fichier
Type: Cours
File type: Latex, tex (source)
Télécharger le document pdf compilé pdficon
Description
Courbe représentative d'une fonction affine - Démonstration de la propriété: la courbe représentative d'une fonction affine est une droite
Niveaux
Seconde, Première S / STI2D
Table des matières
  • Equation de la courbe représentative d'une fonction affine
  • Etude d'un exemple
  • Cas général - Démonstration de la propriété
Mots clé
fonction affine, droite, démonstration, courbe, courbe représentative, alignement, vecteurs colinéaires
Voir aussi:

Documentation sur LaTeX
pdficon
Source LaTex icone
Télécharger le fichier source pdficon

\documentclass[12pt]{article}
%\usepackage{french}
\usepackage{amsfonts}\usepackage{amssymb}

\usepackage[french]{babel}
\usepackage{amsmath}
\usepackage[utf8]{inputenc}
\usepackage{a4wide}
\usepackage{graphicx}
\usepackage{epsf}
\usepackage{calc}
\usepackage{cancel}
\usepackage{enumerate}

\usepackage{array}
%\usepackage{pst-plot,pst-text,pst-tree}
\usepackage{pst-all}
\usepackage{pstricks-add}

\usepackage{hyperref}
\hypersetup{
    pdfauthor={Yoann Morel},
    pdfsubject={Fonctions affines},
    pdftitle={Fonctions affines},
    pdfkeywords={fonction affine, droite, maths, mathématiques}
}
\hypersetup{
    colorlinks = true,
    linkcolor = red,
    anchorcolor = red,
    citecolor = blue,
    filecolor = red,
    urlcolor = red
}
\voffset=-1cm

% Raccourcis diverses:
\newcommand{\nwc}{\newcommand}
\nwc{\dsp}{\displaystyle}
\nwc{\ct}{\centerline}
\nwc{\bge}{\begin{equation}}\nwc{\ene}{\end{equation}}
\nwc{\bgar}{\begin{array}}\nwc{\enar}{\end{array}}
\nwc{\bgit}{\begin{itemize}}\nwc{\enit}{\end{itemize}}
\nwc{\bgen}{\begin{enumerate}}\nwc{\enen}{\end{enumerate}}

\nwc{\la}{\left\{}\nwc{\ra}{\right\}}
\nwc{\lp}{\left(}\nwc{\rp}{\right)}
\nwc{\lb}{\left[}\nwc{\rb}{\right]}

\def\N{{\rm I\kern-.1567em N}}
\def\D{{\rm I\kern-.1567em D}}
\def\No{\N_0}
\def\R{{\rm I\kern-.1567em R}}
\def\C{{\rm C\kern-4.7pt
\vrule height 7.7pt width 0.4pt depth -0.5pt \phantom {.}}}
\def\Q{\mathbb{Q}}
\def\Z{{\sf Z\kern-4.5pt Z}}

\def\Cf{\mathcal{C}_f}

\nwc{\tm}{\times}
\nwc{\V}[1]{\overrightarrow{#1}}

\nwc{\zb}{\mbox{$0\hspace{-0.67em}\mid$}}
\nwc{\db}{\mbox{$\hspace{0.1em}|\hspace{-0.67em}\mid$}}

\nwc{\ul}[1]{\underline{#1}}

\nwc{\bgmp}{\begin{minipage}}\nwc{\enmp}{\end{minipage}}



\headheight=0cm
\textheight=26.2cm
\topmargin=-1.8cm
\footskip=0.8cm
\textwidth=18.8cm
\oddsidemargin=-1.5cm
\parindent=0.2cm

% Bandeau en bas de page
\newcommand{\TITLE}{Courbe représentative d'une fonction affine}
\author{Y. Morel}
\date{}

\usepackage{fancyhdr}

\pagestyle{fancyplain}
\setlength{\headheight}{0cm}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0.1pt}
\lhead{}\chead{}\rhead{}

\lfoot{Y. Morel - \url{http://xymaths.free.fr/Lycee/2nde/}}
\rfoot{\TITLE\ - \thepage/\pageref{LastPage}}
\cfoot{}


\makeatletter
\renewcommand \dotfill {\leavevmode \leaders \hb@xt@ .60em{\hss .\hss }\hfill \kern \z@}
\makeatother
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\psset{arrowsize=7pt}
\begin{document}
%\thispagestyle{empty}

\vspace*{-0.5cm}


\ct{\LARGE \bf \TITLE}

\bigskip\bigskip
\textbf{\large A. Equation de la courbe représentative d'une fonction affine.}

\bgen
\item La courbe représentative d'une fonction $f$ est: 
  \qquad \dotfill \\[.8em]
  .\,\dotfill\\[.8em]  .\,\dotfill

\item Soit la fonction affine $f$ définie par l'expression
  $f(x)=ax+b$. 

  L'équation vérifiée par les coordonnées d'un point $M(x;y)$
  quelconque de la courbe représentative de $f$ est donc:\\[0em]
  \hspace*{3cm}.\,\dotfill
\enen

\bigskip
\textbf{\large B. Etude d'un exemple.} 
On considère dans cette partie la fonction affine $f$ définie par
l'expression $f(x)=3x-2$. 
On note $\Cf$ sa courbe représentative. 

\bgen
\item 
  \bgen[a)]
  \item Compléter les coordonnées des points suivant afin qu'ils soient
  des points de $\Cf$: 

  \medskip
  $A\Bigl(0;\dots\Bigr)$; \quad 
  $B\Bigl(1;\dots\Bigr)$; \quad 
  $C\Bigl(5;\dots\Bigr)$; \quad 
  $D\Bigl(-6;\dots\Bigr)$; \quad 
  $E\lp\dfrac12;\dots\rp$; \quad 
  $F\lp\dfrac34;\dots\rp$; \quad 

  \medskip
  $G\Bigl(\dots; 1)$; \quad 
  $H\Bigl(\dots;0\Bigr)$; \quad 
  $I\Bigl(\dots;5\Bigr)$; \quad 
  $J\Bigl(\dots;-3\Bigr)$; \quad 
  $K\lp\dots;\dfrac32\rp$

  \medskip
  \item Placer ces points dans un repère. Que remarque-t'on ?
  \enen

\bigskip
\item 
  \bgen[a)]
  \item Montrer que les points $A$, $B$ et $C$ sont alignés. 
  \item Nous allons montrer que tous les points précédents sont
    alignés, et de même plus généralement pour \textbf{\ul{tous}} les
    points de $\Cf$.  

    On considère pour cela un point \textbf{\ul{quelconque}} $M(x;y)$
    de $\Cf$. 

    Montrer que les points $A$, $B$ et $M$ sont alignés. 

    Conclure. 
  \enen
\enen

\bigskip
\textbf{\large C. Cas général.}
Soit maintenant une fonction affine $f$ quelconque,
c'est-à-dire une fonction $f$ définie par l'expression 
$f(x)=ax+b$, où $a$ et $b$ sont deux nombres réels quelconques. 

\medskip
En considérant par exemple le point $A$ d'abscisse $0$ de
$\Cf$ et le point $B$ d'abscisse $1$ de $\Cf$,
montrer que pour tout point $M(x;y)$ de $\Cf$, les points
$A$, $B$ et $M$ sont alignés. 

\medskip
Conclure: \medskip

\fbox{\bgmp{0.95\textwidth}
\rule[-1.5em]{0em}{3.5em}
\textbf{Propriété:} La courbe représentative d'une fonction affine est \dotfill
\enmp}


\label{LastPage}
\end{document}

Haut de la page Haut de la page