Fonctions de référence

I Etude de fonctions

Définition: Etudier une fonction f, c'est :

- déterminer son ensemble de définition \mathcal{D}_f
- déterminer son sens de variation
- tracer sa courbe représentative C_f , en exploitant son tableau de variation, et à l'aide d'un tableau de valeurs.

II Fonctions affines

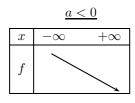
Rappel : Une fonction affine est une fonction définie sur \mathbb{R} qui admet une expression de la forme f(x) = ax + b.

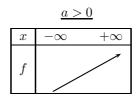
Ex: Etude de f(x) = 2x + 1

- Ensemble de définition : $\mathcal{D}_f = \mathbb{R}$
- Sens de variation : Soient x_1 et x_2 deux réels tels que $x_1 < x_2$, alors $2x_1 + 1 < 2x_2 + 1$, d'où $f(x_1) < f(x_2)$. On en déduit que f est croissante sur \mathbb{R} .
- La courbe représentative de f est la droite d'équation y = 2x + 1.

Ex: Etude de g(x) = -3x + 6.

Propriété: Soit f une fonction affine définie par l'expression f(x) = ax + b. Alors, si a > 0, f est strictement croissante sur \mathbb{R} ; tandis que si a < 0, f est strictement décroissante sur \mathbb{R} .





Ex: Etudier le sens de variation sur \mathbb{R} de la fonction définie par f(x) = 3x + 2, puis tracer sa courbe représentative. Résoudre graphiquement, puis par le calcul, l'inéquation $f(x) \leq 4$.

III Fonction inverse

<u>Définition:</u> La fonction inverse est la fonction définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

Propriété: La fonction inverse est décroissante sur $]-\infty;0[$ et sur $]0;+\infty[$. Sa représentation graphique est une courbe $\mathcal H$ appelée hyperbole.

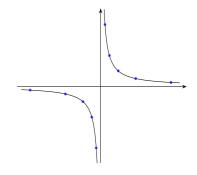
<u>Démonstration</u>:

Sens de variation : Soient x_1 et x_2 deux réels négatifs tels que $x_1 < x_2 < 0$...

Х	$-\infty$	0	$+\infty$	
f				

Courbe représentative : Tableau de valeurs :

	X	$0,\!25$	0,5	1	2	4
:	f(x)	4	2	1	0,5	0,25



Propriété: Pour tout nombre réel x, $f(-x) = \frac{1}{-x} = -\frac{1}{x} = -f(x)$: La fonction inverse est <u>impaire</u>: sa courbe représentative admet l'origine du repère comme centre de symétrie.

1

Ex: Résoudre l'équation $\frac{1}{x} \le 2$ en s'aidant de la courbe représentative de la fonction inverse.

Résoudre de même l'équation $\frac{1}{x} \ge 6$.

Ex: Donner un encadrement de $\frac{1}{x}$ lorsque: a) $x \in [1;2]$ b) $x \in [0;3[$ c) $x \in [-4;-1]$ d) $x \in [-1;1[$

IVFonction racine carrée

Rappels : règles de calcul sur les racines carrées

Propriété: Soit a et b deux nombres positifs, alors,

•
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

•
$$Si \ 0 < a < b$$
, $alors \ 0 < \sqrt{a} < \sqrt{b}$

<u>Mais</u>, comme pour les identités remarquables, $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$ et $\sqrt{a-b} \neq \sqrt{a} - \sqrt{b}$

Ex: • Soit $X = \sqrt{24} - \sqrt{6}$. Calculer X^2 , puis en déduire la valeur de X.

• Soit $X = \sqrt{50} - \sqrt{8}$. Calculer X^2 , puis en déduire la valeur de X.

Ex: Soit $X = \sqrt{10 - \sqrt{84}} + \sqrt{10 + \sqrt{84}}$.

- \bullet Calculer X à la calculatrice.
- Développer X^2 , puis en déduire X, et retrouver le résultat précédent.
- Mêmes questions avec $Y = \sqrt{3 \sqrt{5}} \sqrt{3 + \sqrt{5}}$ et $Z = \sqrt{15 \sqrt{216}} + \sqrt{15 + \sqrt{216}}$.

Ex: Ecrire les fractions sans radical au dénominateur : $A = \frac{2}{\sqrt{8}}$, $B = \frac{3}{2+\sqrt{5}}$, $C = \frac{-2}{\sqrt{2}+\sqrt{3}}$, $D = \frac{3-\sqrt{2}}{5+\sqrt{2}}$

Ex : Résoudre les systèmes :

$$\begin{cases} \sqrt{3} x - y = 0 \\ 2x + \sqrt{3} y = 5 \end{cases} \begin{cases} 3\sqrt{2} x + \sqrt{8}y = 2 \\ \sqrt{8} x - \sqrt{2} y = -8 \end{cases}$$

$$\begin{cases} 3\sqrt{2}x + \sqrt{8}y = 2\\ \sqrt{8}x - \sqrt{2}y = -8 \end{cases}$$

Fonction racine carrée

<u>Définition:</u> La fonction racine carrée est la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$.

D'après la propriété précédente, si 0 < a < b, alors $0 < \sqrt{a} < \sqrt{b}$, soit aussi, 0 < f(a) < f(b). On en déduit la propriété:

Propriété: La fonction racine carrée est strictement croissante sur $[0; +\infty[$.

\mathbf{V} Fonction carré

Définition: La fonction carré est la fonction définie sur \mathbb{R} par $f(x) = x^2$.

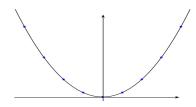
Propriété: La fonction carré est décroissante sur \mathbb{R}^- , et croissante sur \mathbb{R}^+ . Sa représentation graphique dans un repère orthonormé est une courbe \mathcal{P} appelée parabole.

Sens de variation : Soient a et b deux réels négatifs tels que $a < b \le 0$, alors $a^2 > b^2$, soit aussi f(a) > f(b): la fonction f est croissante sur $]-\infty;0]$.

٠.	, -) ()		,
	X	$-\infty$	0	$+\infty$
	f		0	

Courbe représentative : Tableau de valeurs

	X	-2	-1	0	1	2
•	f(x)	4	1	0	1	4



Propriété: Pour tout nombre réel x, $f(-x) = (-x)^2 = x^2 = f(x)$: La fonction carré est paire : sa courbe représentative admet l'axe des ordonnées comme axe de symétrie.

Ex: Tracer la courbe représentative la fonction carré, et résoudre, en s'aidant de cette courbe, les équations:

a)
$$x^2 \le 9$$

b)
$$x^2 \le 5$$

c)
$$r^2 > 8$$

VIFonction du second degré

<u>Définition:</u> Un fonction du second degré est une fonction définie sur IR par une expression de la forme : $f(x) = ax^2 + bx + c$, où $a \neq 0$, b et c sont trois nombres réels quelconques.

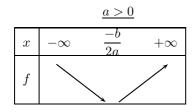
 Ex :

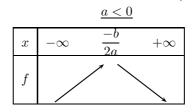
- $f(x) = 2x^2 5x + 2$ est une fonction du second degré, avec a = 2, b = -5 et c = 2.
- $f(x) = -3x^2 + x 7$ est une fonction du second degré, avec a = -3, b = 1 et c = -7. $f(x) = -x^2 \frac{3}{2}$ est une fonction du second degré, avec a = -1, b = 0 et $c = -\frac{3}{2}$.

Ex:

- Soit la fonction du second degré f définie par $f(x) = x^2 2x + 3$. Montrer que pour tout x réel, $f(x) = (x-1)^2 + 2$. En déduire le sens de variation et le minimum de f.
- Soit la fonction du second degré g définie par $g(x) = x^2 + 6x 8$. Montrer que pour tout x réel, $g(x) = (x+3)^2 - 17$. En déduire le sens de variation et le minimum de g.
- Soit la fonction du second degré h définie par $h(x) = 2x^2 + 12x + 10$. Montrer que pour tout x réel, $h(x) = 2(x+3)^2 - 8$. En déduire le sens de variation et le minimum de h.
- Soit la fonction du second degré k définie par $k(x) = -2x^2 12x 9$. Trouver trois nombres réels a, b, et c tels que, pour tout x, $k(x) = a(x+b)^2 + c$.
- Soit la fonction du second degré l définie par $l(x) = -2x^2 12x 9$. Trouver trois nombres réels a, b, et c tels que, pour tout x, $l(x) = a(x+b)^2 + c$.

Soit f une fonction du second degré définie par l'expression $f(x) = ax^2 + bx + c$, avec $a \neq 0$, b et c trois Propriété: nombres réels quelconques, alors, pour tout nombre réel x, $f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$, et donc,





<u>Ex</u>: Tracer les courbes représentatives des fonctions f et g définies par : $f(x) = 4x^2 + 16x - 6$ et $g(x) = -2x^2 + 8x - 6$. Déterminer, graphiquement puis par le calcul, les coordonnées des points d'intersection des deux courbes.

Ex: Soit la fonction f définie par l'expression $f(x) = ax^2 + bx + 2$, où a et b sont des nombres réels à déterminer, et soit C_f sa courbe représentative.

On sait de plus que les points A(1;-1) et B(4;2) appartiennent à C_f .

- a) Déterminer a et b, et l'expression de f.
- b) Dresser le tableau de variation de f et en déduire son minimum.
- c) Tracer \mathcal{C}_f .

Ex: Chaque jour une entreprise fabrique un nombre x d'objets, compris entre 0 et 50.

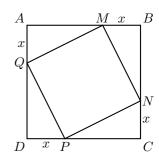
Le coût de production des objets est donnée, en euros, par C(x) = 60 - 0.3x, tandis que le revenu de la vente de ces x objets est, en euros, $R(x) = 20, 1x - 0, 3x^2$.

- a) Exprimer le bénéfice B(x) en fonction de x.
- b) Quel est le bénéfice maximal que espérer l'entreprise?

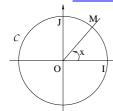
Ex: Dans un carré ABCD de côté 20 cm, on inscrit un carré MNPQ tel que x = MB = NC = PD = QA.

On cherche la valeur de x pour que le carré MNPQ ait une aire minimale.

- 1) (Facultative) Quelle est l'aire du carré MNPQ si x = 5 cm? si x = 12 cm?
- 2) Exprimer l'aire A(x) de MNPQ en fonction de x. Dresser le tableau de variation de A(x) et conclure.



VII Fonctions cosinus et sinus



Soit M un point de C, avec $x = \widehat{IOM}$.

La longueur de l'arc IM est, en fonction de x:

$$\begin{array}{ccc} x & \longrightarrow & ? \\ 360 & \longrightarrow & 2\pi \end{array}$$

Donc, la longueur de l'arc IM est $x \times \frac{2\pi}{360} = \frac{\pi}{180}$.

<u>Définition:</u> Pour un point M du cercle trigonométrique, on appelle angle en radian la longueur de l'arc IM. Si $x = \widehat{IOM}$ est la mesure de cet angle en degré, alors la mesure en radian est $x \times \frac{\pi}{180}$.

angle en degré					90	180	360
angle en radian	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π

<u>Définition:</u> On dit qu'une fonction est périodique de période T si pour tout x on a: f(x+T)=f(x).

Propriété: Les fonctions sinus et cosinus sont périodiques de période 2π .

Pour tout x, $\cos(-x) = \cos x$: la fonction cosinus est paire. Pour tout x, $\sin(-x) = -\sin x$: la fonction sinus est impaire.

Propriété: Pour tout nombre x :

 $\bullet \cos^2 x + \sin^2 x = 1$

 $\bullet \ -1 \le \cos x \le 1 \ et \ -1 \le \sin x \le 1$

Valeurs remarquables:

X	$0 \frac{\pi}{6}$		$\frac{\pi}{4}$ $\frac{\pi}{3}$		$\frac{\pi}{2}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin x$	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0