Exercice 1 (Baccalauréat Amérique du nord, juin 2005)

Soit la fonction f définie sur l'intervalle [0;2] par $: f(x) = \frac{2x+1}{x+1}$

- 1. Etudier les variations de f sur l'intervalle [0; 2]. Montrer que si $x \in [1; 2]$ alors $f(x) \in [1; 2]$.
- 2. (u_n) et (v_n) sont deux suites définies sur \mathbb{N} par : $\begin{cases} u_0 = 1 \text{ et pour tout entier } n, u_{n+1} = f(u_n); \\ v_0 = 2 \text{ et pour tout entier } n, v_{n+1} = f(v_n). \end{cases}$
 - a. Tracer dans un repère orthonormal la courbe représentative de la fonction f sur l'intervalle [0; 2]. Construire sur l'axe des abscisses de ce graphique les trois premiers termes de chacune des suites (u_n) et (v_n) en laissant apparents les traits de construction.

A partir de ce graphique, que peut-on conjecturer concernant le sens de variation et la convergence des suites (u_n) et (v_n) ?

b. Montrer à l'aide d'un raisonnement par récurrence que :

Pour tout entier $n, 1 \le v_n \le 2$.

Pour tout entier $n, v_{n+1} \leq v_n$.

On admettra que l'on peut démontrer de la même façon que :

Pour tout entier $n, 1 \le u_n \le 2$.

Pour tout entier $n, u_n \leq u_{n+1}$.

c. Montrer que pour tout entier naturel n, $v_{n+1} - u_{n+1} = \frac{v_n - u_n}{(v_n + 1)(u_n + 1)}$.

En déduire que pour tout entier naturel $n, v_n - u_n \ge 0$ et que : $v_{n+1} - u_{n+1} \le \frac{1}{4}(v_n - u_n)$

- d. Montrer que pour tout entier $n, v_n u_n \le \left(\frac{1}{4}\right)^n$.
- e. Montrer que les suites (u_n) et (v_n) convergent vers un même réel α . Déterminer alors la valeur exacte de α .

Exercice 2

- 1. Soit g la fonction définie sur IR par : $g(x) = x^3 12x 16$.
 - a) Déterminer les limites de g en $-\infty$ et $+\infty$.
 - b) Dresser le tableau de variations de g.
 - c) Montrer que l'équation g(x)=0 admet une unique solution α dans [3; 5]. Déterminer une valeur approchée de α à 0, 1 près par excès.
 - d) Déduire de ce qui précède la signe de g(x).
- 2. Soit f la fonction définie sur $]2; +\infty[$ par $: f(x) = \frac{x^3 + 2x^2}{x^2 4}$ et \mathcal{C}_f sa courbe représentative dans un repère orthogonal.
 - a) Déterminer la limite de f en 2 et en $+\infty$. Préciser les éventuelles asymptotes.
 - b) On admet que, pour tout x > 2, $f'(x) = \frac{xg(x)}{(x^2 4)^2}$. Dresser alors le tableau de variation de f.
 - c) Montrer que la droite d'équation y = x + 2 est asymptote à \mathcal{C}_f .

Exercice 3 (D'après baccalauréat Polynésie française, septembre 2006)

1. Soit f la fonction définie sur ${\rm I\!R}$ par :

$$f(x) = (2x^3 - 4x^2)e^{-x}$$

Dresser le tableau de variations de f.

- 2. Soit u une fonction définie et dérivable sur \mathbb{R} . On définit la fonction v sur $]0; +\infty[$ par $v(x) = u\left(\frac{1}{x}\right)$.
 - a) On suppose que u est croissante sur l'intervalle [a;b] (où 0 < a < b). Déterminer le sens de variation de v sur $\left[\frac{1}{b};\frac{1}{a}\right]$.
 - b) On définit maintenant la fonction g par $g(x) = f\left(\frac{1}{x}\right)$ sur $]0; +\infty[$, où f est la fonction définie à la question 1. Déduire des questions précédentes le tableau de variations de la fonction g sur l'intervalle $]0; +\infty[$.

Exercice 4 (D'après baccalauréat C, Aix-Marseille 1989)

On appelle f la fonction définie sur $]0; +\infty[$ par

$$f(x) = \frac{x}{\sqrt{3}} + \frac{\sqrt{3}}{2x}$$

et C_f sa courbe représentative dans le plan muni d'un repère orthonormal $(O; \vec{i}, \vec{j})$ d'unité 2 cm.

- 1) Etudier les limites de f en 0 et $+\infty$. Préciser les éventuelles asymptotes (on pourra étudier $\lim_{x\to +\infty} \left(f(x) - \frac{x}{\sqrt{3}}\right)$).
- 2) Montrer que, pour tout x > 0, $f'(x) = \frac{2x^2 3}{2x^2\sqrt{3}}$. En déduire les variations de f.
- 3) Soit m un réel, et soit Δ la droite d'équation y=m. Discuter, suivant les valeurs de m, le nombre de points d'intersection de \mathcal{C}_f et Δ .
- 4) Pour $m > \sqrt{2}$, on appelle A et B les points d'intersection de C_f et Δ , et I le milieu de [A; B]. Donner, en fonction de m, les coordonnées de I.

 Montrer que quand m est dans l'intervalle $]\sqrt{2}; +\infty[$, I est sur la droite d'équation $x = \frac{\sqrt{3}}{2}y$.
- 5) Tracer la courbe C_f et ses asymptotes.